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Nasal DNA methylation at three CpG sites
predicts childhood allergic disease
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Childhood allergic diseases, including asthma, rhinitis and eczema, are pre-
valent conditions that share strong genetic and environmental components.
Diagnosis relies on clinical history and measurements of allergen-specific IgE.
Wehypothesize that amulti-omicsmodel could accurately diagnose childhood
allergic disease. We show that nasal DNA methylation has the strongest pre-
dictive power to diagnose childhood allergy, surpassing blood DNA methyla-
tion, genetic risk scores, and environmental factors. DNA methylation at only
three nasal CpG sites classifies allergic disease in Dutch children aged 16 years
well, with an area under the curve (AUC) of 0.86. This is replicated in Puerto
Rican children aged 9–20 years (AUC 0.82). DNA methylation at these CpGs
additionally detects allergicmultimorbidity and symptomatic IgE sensitization.
Using nasal single-cell RNA-sequencing data, these three CpGs associate with
influx of T cells andmacrophages that contribute to allergic inflammation. Our
study suggests the potential of methylation-based allergy diagnosis.

Allergic diseases such as asthma, rhinitis, and eczema are highly pre-
valent, non-communicable childhood diseases worldwide1 that have a
significant impactonquality of life and cause a considerable burdenon
healthcare systems2,3. Allergic diseases often coexist in the same indi-
vidual, suggesting shared underlying mechanisms4. The prevalence of
allergic diseases has increased rapidly for more than 50 years, and
40–50% of schoolchildren in the Western world have a positive
allergen-specific Immunoglobulin (IgE) to one or more common
allergens5. However, a positive allergen-specific IgE does not necessa-
rily coincide with presenting allergy symptoms, and effective bio-
markers are needed to capture the allergic inflammation signal rather
than the presence of IgE. There is, therefore, a great need for non-
invasive biomarkers to facilitate better diagnosis, especially in early
childhood.

Childhood allergic diseases have strong shared genetic and
environmental components6,7. Many shared genetic risk variants for

allergic disease influence the expression of immune-related genes8.
The increase in the prevalence of allergic diseases indicates that
environmental exposures, such asmicrobial stimulation9, air pollution,
breastfeeding, pets at home, and cigarette smoking, also have an
important influence10. Environmental factors can have sustained
effects on gene expression through the modulation of epigenetic
features such as DNA methylation11. Indeed, epigenome-wide associa-
tion studies (EWAS) of allergic diseases in both whole blood and nasal-
brushed cells have shown many shared epigenetic signatures of
allergy12–15.

There is a need for the prediction of individual allergic disease
risk, especially in young, preschool children, in whom allergy is diffi-
cult to diagnose. While previous studies have constructed models to
assess individual disease risk, thesemodels investigated usually only a
single layer of ‘omics’ data, such as the genome, epigenome, tran-
scriptome, proteome, or metabolome14,16–19. Given the complex
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biological nature of allergic diseases, with the known involvement of
multiple omics layers and environmental factors, leveraging the
information from multi-omics data may improve the prediction of
these diseases20. Recently, an integrated multi-omics approach was
successfully used topredict cytokineproductionof immune cells21, but
there are few complex disease prediction models using multi-omics
approaches.

In this study, we develop amachine learning predictionmodel for
allergic disease, by systematically integrating large-scale multi-omics
data from the genome, DNA-methylome of blood and nasal cells, and
environmental factors. We first evaluate the predictive power of each
layer separately and identify the most predictive features to construct
a parsimonious allergy prediction model in the Dutch PIAMA (Pre-
vention and Incidence of Asthma and Mite Allergy) birth cohort22. We
replicate our model in three independent birth cohorts of children of
different ethnicities and ages. We report that allergy can be predicted
accurately using nasal DNAmethylation at only three CpG sites. These
sites also detect allergic multimorbidity and symptomatic sensitiza-
tion, and can be related to the influx of T cells andmacrophages in the
nasal mucosa.

Results
Nasal DNA methylation has the most predictive power for
allergic disease
To construct a multi-omics prediction model of allergic disease, we
first investigated the relative contributions of each data layer, includ-
ing genomics, blood and nasal DNA methylation, and personal and
environmental factors. We performed these analyses in the PIAMA
cohort, a prospective national population-based birth cohort study on
the development of asthma and allergy in the Netherlands22 (Fig. 1a).
Here, the allergic disease was defined by both the presence of asthma/
rhinitis/eczema and the detection of allergen-specific IgE in blood; we
found a prevalence of 19.3%.

In 348 children aged 16 years with complete data (Table 1), we
selected features from four data layers (genome, blood, nasal methy-
lome, and environmental factors) that had been previously associated
with allergic disease (see Methods). In total, we analyzed 467 features.
We evaluated six machine learning methods (see Methods) and
adopted Elastic Net23 as our model of choice because it offered accu-
rate performance, low overfit, and good interpretability (Supplemen-
tary Table 1).

The largest predictive power was attributed to DNA methylation
levels in nasal epithelial cells (Fig. 2a); other layers had a negligible
effect. This conclusion did not change when we varied the order in
which the layers were added. 86%of the top 50 features were nasal and
14% were blood DNA methylation CpG sites (Supplementary Table 2),
underlining thepredictive power of theDNA-methylome. These results
indicate that genetic factors had very limited predictive power for the
allergic disease at the individual level, which was also observed in a
largerdataset of 675 individuals from thePIAMAcohort forwhomboth
genotype and allergy phenotype data were available (Supplemen-
tary Fig. 1).

A parsimonious prediction model with only three nasal CpG
sites predicts allergy
We next aimed to generate a parsimonious model to increase our
model’s robustness, reproducibility, and cost-effectiveness, and to
facilitate translation to a clinical setting (Fig. 1b), starting with the top-
ten ranked features (Fig. 2b), all of which were nasal DNA CpG
methylation sites (Supplementary Table 3). When we compared the
performance of models with an incremental number of features, we
observed that after including the first three nasal CpG sites,
additional CpG sites did not further improve model performance
(p value = 0.76, two-sided corrected repeated k-fold cross-validation
(cv) test24, Fig. 2c). The other test statistics are displayed in

Supplementary Table 4. These three CpGs (cg20372759, cg01870976,
and cg24224501) are located near gene CYP27B1, SNRPA1, and LRRC17
respectively (Supplementary Table 5). The “three-CpG sites” model
performed well in predicting allergic disease in the PIAMA discovery
cohort,with anROCAUC (receiver operating characteristic, area under
the curve) test score of 0.86 (Fig. 3a). This parsimonious model has a
near-zero overfit (ROC AUC difference of 0.005), as the ROC AUC
training scorewas also 0.86 (Fig. 3a). Because of the imbalanceof cases
and controls in the discovery dataset, we also introduced the
precision-recall curve (PRC)25 to evaluatemodel performance: the PRC
AUC of the model was 0.50 (Supplementary Fig. 2a). The model’s
coefficients can be found in Supplementary Table 6. The three-CpG
model was also compared to the previously published nasal 30-CpG
model that performedwell in predicting atopy (i.e., the presenceof IgE
sensitization) in the Epigenetic Variation and Childhood Asthma in
Puerto Ricans study (EVA-PR)14. Althoughweonly used three nasal CpG
sites, our model showed a comparable performance (p value = 0.32,
two-sided corrected repeated k-fold cv test) with the more complex
30-CpG model (ROC AUC test score of 0.83) (Supplementary Fig. 3a).
Overfit of this more complex model remained low (ROC AUC differ-
ence of 0.008), albeit slightly larger than our three-CpG model. The
PRC AUC of 0.48 was also lower in the 30-CpGmodel (Supplementary
Fig. 3b), although the difference was not significant (p value = 0.40,
two-sided corrected repeated k-fold cv test).

Three-CpG model also predicts allergic disease in Puerto Rican
children
To test its generalizability across ethnicities, we first replicated our
three-CpG model in a cohort of comparably aged Puerto Rican chil-
dren fromPuerto Rico (EVA-PR)14 (Fig. 1c). In EVA-PR, the prevalence of
allergic disease was 55.5% and the mean age was 15.5 years (Table 1).
Our model performed well on both ROC AUC (0.82) (Fig. 3b) and PRC
AUC (0.84) (Supplementary Fig. 2b). The PRC AUC’s baseline value (of
a random model) is equal to the disease prevalence, here 0.56, which
explains its step increase relative to the discovery cohort. The good
replicability is affirmed by the precision and recall metrics of 0.80 and
0.79, respectively, for the EVA-PRcohort, compared to0.53and0.64 in
the PIAMA cohort (Supplementary Table 7). We also performed the
replication on stratified age groups in EVA-PR (Supplementary Fig. 4),
which showed that model performance is very good at similar (15–17
years) and higher ages (18–20 years); and remains satisfactory for the
age group 9–14 year (Supplementary Fig. 4).

We next extrapolated our model to two cohorts of younger chil-
dren (6-year-olds; COPSAC2010, Denmark and MAKI trial26, the Neth-
erlands, Table 1), both with an ROC AUC of 0.79 (Fig. 3c, d). Our
model’s performance in the younger cohorts showed considerably
lower recall (Supplementary Fig. 2c, d), especially inMAKI, where recall
dropped to 0.03 (Supplementary Table 7). This indicates we should be
cautious in extrapolating our prediction model to this younger age
group. In order to understand the difference in performance between
age groups, we compared the probedistributionof the three CpG sites
in participants with and without allergic disease in all four discovery
and replication cohorts (Fig. 3e–h). We observed that the DNA
methylation levels of the three CpG sites were clearly lower in parti-
cipants with allergic disease than in participants without allergic dis-
ease in all cohorts, with the highest difference seen in adolescents and
paralleled by the better prediction power in these two cohorts. The
DNAmethylation levels in control samples were higher in the younger
cohorts compared to the adolescent cohorts, whichmay be attributed
to the ageing effect on DNA methylation (Fig. 3e–h).

DNA methylation at three CpG sites relates to symptomatic IgE
sensitization and disease multimorbidity
The allergic disease was defined as a combination of diseases (asthma/
rhinitis/eczema) and IgE sensitization. To better understand the
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association of the three top CpG sites with both disease and IgE sen-
sitization, we performed group-by-group comparisons in the dis-
covery cohort, analyzing symptomatic and asymptomatic children
with and without IgE sensitization. The results showed that these CpG
sites were not only associated with IgE sensitization, but also with the
presence of clinical symptoms in IgE-sensitized participants (Fig. 4a).
Importantly, we observed significant differences between the IgE+

symptom+ group and the IgE+ symptom− group for the three CpG
sites (p values = 1.4 × 10−3, 6.2 × 10−4, and 9.8 × 10−4, for CpG
cg01870976, cg20372759, and cg24224501, respectively, two-sided
Student’s t-test), suggesting that these three sites distinguish symp-
tomatic from asymptomatic sensitization. Next, we found lower DNA
methylation of these CpG sites inmultimorbidity compared to a single
allergic disease (p values = 0.039, 0.047, and 0.17, two-sided Student’s

Article https://doi.org/10.1038/s41467-022-35088-6

Nature Communications |         (2022) 13:7415 3



t-test, Fig. 4b). These findings were also exactly replicated in the EVA-
PR cohort (Fig. 4c, d), confirming that nasal DNAmethylation captures
differences between asymptomatic and symptomatic sensitization and
allergic disease multimorbidity.

Genes associated with the three CpG sites identified a signature
of immune cells
To interpret the biological changes responsible for the differential
methylation levels of the three nasal CpG sites in allergy

Fig. 1 | Study design to develop and validate the prediction model and func-
tionally interpret its predictors. a We integrated multi-omics data, including,
genetics, DNA methylation from blood and nasal brushes, and environmental fac-
tors from the PIAMA cohort. Using machine learning methods, we aimed to (1)
assess the contribution of each data layer to the performance of a prediction
model; and (2) present a simple predictionmodel for allergic disease.b To develop
a parsimonious prediction model, we first ranked all features from the full dataset,
then features were added incrementally until no significant increase in perfor-
mance was seen. The performance of the final parsimonious model was

demonstrated in the discovery cohort. c The finalmodel was evaluated by applying
it to another similar but independent cohort (EVA-PR) and two independent
younger children cohorts, COPSAC2010 and MAKI. d To understand the informa-
tion that was captured by the three CpG sites used in the model, we linked the
methylation level of the CpG sites to the expression of genes by eQTManalysis. The
eQTM genes were functionally interpreted by gene network and pathway analysis;
scRNA-seq data were used to interpret the expression pattern of eQTM genes in
different nasal cell types.

Table 1 | Characteristics of the discovery and replication cohorts

PIAMA (Discovery) EVA-PR (Replication) COPSAC2010 (Replication) MAKI (Replication)

Sample size 348 481 503 259

Age (years) 16.3 (0.20) 15.5 (3.0) 6.0 (0.2) 5.8 (0.4)

Gender male 179/348 (51.4%) 248/481 (51.6%) 217/503 (43.1%) 146/259 (56.4%)

Smoking * 37/297 (12.5%) NA 35/ 503 (6.9%) 15/259 (5.8%)

Asthma 23/348 (6.6%) 236/481 (48.9%) 31/503 (6.2%) 20/255 (7.8%)

Rhinitis 59/348 (17.0%) 295/481 (61.3%) 60/503 (53.3%) 27/259(10.4%)

Eczema 29/348 (8.3%) 89/481 (18.5%) 55/503 (10.8%) 28/259 (10.8%)

Positive allergen-specific IgE 162/348 (46.6%) 311/481 (64.7%) 85/503 (18.7%) 56/ 205 (27.3%)

Allergy 67/348 (19.3%) 267/481 (55.5%) 37/503 (8.9%) 29/259 (11.2%)

Continuous variables are presented as mean (SD); categorical variables are presented as (number of “yes”)/(total number (with this phenotype available)) (percentage).
PIAMA prevention and incidence of asthma and mite allergy birth cohort (Netherlands), EVA-PR epigenetic variation and childhood asthma in Puerto Ricans (USA), COPSAC2010 Copenhagen
prospective study on asthma in childhood (Denmark), MAKI trial (the Netherlands).
*Smoking in COPSAC2010 and MAKI cohort refers to second-hand smoking.

Fig. 2 | Feature selectionof thedata layers and features that contributemost to
model performance. a Based on the validation performance of an Elastic Net
model using a ten-times repeated tenfold cross-validation procedure. Layers were
added sequentially: age and gender were added first, then perinatal factors were
included in the model, etc. Negative contributions could occur when variables had
lowpredictive power and increasedmodel overfit. Perinatal features were lowbirth
weight and breastfeeding; Environment: pets during pregnancy,maternal smoking,

and older siblings at home; Genetics: allergy SNPs and polygenic risk scores (PRS)
for the combined allergy phenotype, as well as for asthma, rhinitis, eczema, and IgE
sensitization; Blood methylation: 219 CpG sites from blood cells previously asso-
ciated allergy; Nasal methylation: 134 CpG sites from nasal cells previously asso-
ciatedwith allergy.bRankproduct of top-ten features. cTheAUCofmodelswith an
incremental number of features; after thefirst three nasal CpG sites, adding another
CpG site did not further increase the model’s performance.
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(Supplementary Table 5), we first correlated DNAmethylation to gene
expression levels by expression quantitative trait methylation (eQTM)
analysis, using matched nasal RNA-seq data from children of the
PIAMA cohort (n = 244 with both types of data available). Expression
levels of 127 unique genes (eQTM genes) were associated with
methylation levels at the three CpG sites, resulting in 182 CpG-gene
pairs (Supplementary Data 1), with many genes related to more than
one of the three CpG sites (Supplementary Fig. 5). We applied weigh-
ted correlation network analysis (WGCNA27) on these eQTM genes and
identified twomodules (Supplementary Table 8). Using KEGGpathway
enrichment analysis, we found that genes from Module 1 were enri-
ched in ten, mostly T cell-related pathways, including hematopoietic
cell lineage, Th1 and Th2 cell differentiation, and Th17 cell differ-
entiation (Supplementary Fig. 6a).Genes fromModule 2were enriched
in eight pathways (Supplementary Fig. 6b), including the B cell
receptor signaling pathway and complement and coagulation cas-
cades. These results suggest that these eQTM genes are related to
immune cells and may be involved in the allergic inflammatory
response.

We hypothesized that the differences in CpGmethylation in nasal
brushes in allergic and non-allergic participants reflected differences
in cell type composition or different DNA methylation profiles in dif-
ferent cell types, with the eQTM genes reflecting the cell-type specific
transcriptional profile. To map these putative cell types, we generated
a single-cell RNA-seq dataset from nasal brushings of nine adult par-
ticipants (five healthy and four asthmatics, Supplementary Table 9) to
assess the cell-type specific expression pattern of the eQTM genes.We
identified ten cell types: eight epithelial cell clusters (basal, goblet 1,
goblet 2, squamous, cycling, ciliated, deuterosomal, and ionocytes),
and two immune cell clusters (myeloid and T cells) (Fig. 5a). Most of
the eQTM genes from Module 1 were highly expressed in the T cell

cluster, while the genes from module 2 were enriched in the myeloid
cell cluster (Fig. 5b). These findings were consistent when using
another nasal Single-cell RNA-seq dataset28 (Supplementary Fig. 7)
which used the nasal polyp tissues that were different from nasal
brushing cells used in this study. Subsetting and re-clustering of all
immune cells (Fig. 5c) indicated the presence of five myeloid cell
clusters (dendritic cells (DC) −1, DC-2, macrophages, classical mono-
cytes and plasmacytoid dendritic cell (pDCs), Fig. 5e), 3 T cell clusters
(CD8 T cells/cytotoxic T lymphocytes (CTLs), CD4 cells/Treg cells, and
NK cells, Fig. 5f), and single cluster representing B cells, plasma cells,
and mast cells. Genes from Module 1 were most highly expressed in
CD8/ CTLs and CD4/Treg cells (Fig. 5d, h), while genes fromModule 2
were enriched in macrophages (Fig. 5d, f), suggesting that the three
CpG sites may capture the relative increase in both T cells and mac-
rophages in allergic inflammation in nasal brushes.

Allergy-associated SNP may mediate allergy through DNA
methylation of a nasal CpG site
Weperformedmethylationquantitative trait locus (MeQTL) analysis to
investigate if the three nasal CpG sites are regulated by allergy-
associated SNPs. For this, we associated the three CpG sites with SNPs
previously associated with allergic disease8. We identified 15 SNP-CpG
pairs showing nominal significance (p value <0.05, Supplementary
Table 10), suggesting potential regulation of genetic variants at the
methylation level of these CpG sites. Themost significant SNPwas also
associated with allergic disease in our PIAMA dataset (p value = 0.022,
Supplementary Table 11).We assessed themediation effect of this SNP,
located in the ATG5 (Autophagy Related 5) gene, on the allergic disease
through DNA methylation and found that 75.7% of the effect of
rs9372120 on the allergic diseasewasmediated by DNAmethylation of
cg20372759 (Supplementary Table 11).

Fig. 3 | Model performance and feature distribution in the discovery and
replication cohorts.The ROC curve and AUC of themodel in the discovery cohort
(a) and replication cohorts: EVA-PR (b, mean age 16 years), COPSAC2010 (c, mean
age 6 years), and MAKI (d, mean age 6 years). The DNA methylation levels of the
three CpG sites in participants with and without allergy are shown in (e–h), for

PIAMA (e, n = 348), EVA-PR (f, n = 481), COPSAC2010 (g, n = 503), and MAKI
(h, n = 259), respectively. Box plots show medians and the first and third quartiles
(the 25th and 75th percentiles), respectively. The upper and lower whiskers extend
the largest and smallest value no further than 1.5 × IQR, with individual dots indi-
cating individual observations outside this range.
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Fig. 4 | DNA methylation levels of three CpG sites in subgroups of allergy
phenotype. Methylation levels are shown for the discovery (a, b, PIAMA, n = 348)
and a replication cohort (c, d, EVA-PR, n = 481). Samples were stratified by both IgE
sensitization and symptom (a, c), and were additionally stratified by the number of
symptoms (b, d). The Student’s t-test (two-sided) was used to compare the dif-
ference between different groups (*P < 0.05; **P < 0.01, ***P < 0.001, ****P < 0.0001,
ns not significant). Box plots show medians and the first and third quartiles

(the 25th and 75th percentiles), respectively. The upper and lower whiskers extend
the largest and smallest value no further than 1.5 × IQR. Exact p values within PIAMA
from top to bottom per CpG are as follows. a cg01870976: 4.6 × 10−8, 1 × 10−10, 0.89,
0.0014; cg20372759: 4.2 × 10−9, 3 × 10−12, 0.85, .00062; cg24224501: 2.4 × 10−5,
9.4 × 10−11, 0.029, .00098. b cg01870976: 0.0058, 0.031, 0.039; cg20372759:
0.0041, 0.014, 0.047; cg24224501: 0.0022, 0.012, 0.17.
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Discussion
In this study, we integrated multi-omics data to assess the ability of a
combination of genetic, epigenetic, and environmental factors to
predict allergic disease. We hypothesized thatmulti-omics integration
would provide amore accurate allergy predictionmodel, compared to
using a single omics layer. However, our study has shown that nasal
DNA methylation alone is a strong and valuable biomarker for diag-
nosing allergic disease. Thus, we provide a proof-of-concept that DNA
methylation can be used to generate a simple diagnostic test for a
complex disease such as an allergy. We extended this finding by
showing that nasal DNA methylation is able to differentiate sympto-
matic from asymptomatic IgE sensitization, providing for the first time
a set of biomarkers that can distinguish these two conditions, aswell as
reflecting allergic disease comorbidity. We mapped the changes in
these three CpG sites to an increase in T cells and macrophages in the

nasal mucosa. We propose that nasal DNA methylation accurately
reflects allergic inflammation in the nasal mucosa, driven by activated
T cells and macrophages.

The allergic disease often starts at an early age and may manifest
in different organs, such as the respiratory system (asthma, rhino-
conjunctivitis), the skin (atopic eczema), and the gastrointestinal tract
(food allergy). These allergic diseasesmay be present at the same time
in an individual (comorbidity) or may have a temporal sequence,
such as displayed in the allergic march (from eczema to asthma and
hay fever)4,29. Unsupervised statistical techniques performed in
large population-based cohorts suggested that two main clusters
could be observed: unaffected children and children with allergic
comorbidity30. This pattern of extensive comorbidity of allergic dis-
eases was further supported by the identification of genetic and epi-
genetic variations that were associated with all three diseases (asthma,

Fig. 5 | Expressionpatterns of genes associatedwith threeCpGsites in different
cell types.Using single-cell data, we identified ten cell types in nasal brushing cells
(a). We identified two gene modules from eQTM genes by Weighted Gene Co-
expression Network Analysis (WGCNA). Plot (b) depicts the average expression
levels per cell cluster of genes fromModule 1 andModule 2, whichwere available in
the nasal scRNA-seq dataset in all cell types. Genes from Module 1 were highly
expressed in the T cell cluster and genes fromModule 2 were enriched to myeloid
cells. After re-clustering of all immune cells from the two immune clusters, we

identified seven immune cell clusters (c). Plot (d) showing the genes fromModule 1
was enriched to T cell clusters and genes from Module 2 was enriched to myeloid
cell clusters. Further re-clustering of T cell cluster (g) and myeloid cell cluster (e)
respectively identified that genes from Module 1 were enriched to CD8/CTL
effectors and CD4/ Treg cells (h), while genes from Module 2 were enriched to
macrophages (f). CTL cytotoxic T lymphocyte, DC dendritic cell, pDCs plasmacy-
toid dendritic cells, NK nature killer cell, Treg regulatory T cell.
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rhinitis, and eczema)8,31. Part, but not all, of this overlap is explained by
IgE sensitization4, suggesting that there are more pathogenic
mechanisms shared between allergic diseases. These findings promp-
ted us to investigate allergic disease as one unified phenotype.

Oneof our keyfindings is thatDNAmethylationof nasal brushings
is most predictive of allergic disease. This can be explained by the fact
that epigenetic signatures in the upper airways may reflect both
genetic and environmental factors, in addition to cell-type composi-
tion and cell activation32. The three CpG sites that we use in our par-
simonious model are related to genes that were enriched in immune
cell pathways and mapped to T cells and macrophages. However, a
limitation of our single-cell annotation is the lack of eosinophils in the
nasal single-cell RNA-seq dataset, as these cells are selectively missed
due to their high RNase content. Ourfindings indicate that the influx of
immune cells into the nasal mucosa can be detected using nasal bru-
shes and provides a strong and distinctive DNA methylation signal in
allergic disease. In addition, we found that DNA methylation might
mediate the effect of genetic variants on allergic disease. Taken
together, these results indicate that our CpG sites may capture both
genetic contribution and inflammation in the nose.

In contrast to the nasal brushings, methylation levels of CpG sites
in blood did not improve the performance of our prediction model.
One explanationmight be that the signal in the blood is diluted due to
the complex mixture of immune cells present in the sample. We pre-
viously reported a similar observation in childhood asthma, showing
that the DNA methylation signal associated with asthma was stronger
in purified eosinophils than in whole blood samples12,33. Another
explanation could be that the tissue-resident T cells and macrophages
may be different from their counterparts in the blood, which do not
have the samemethylation levels at these threeCpGsites. In support of
this, methylation at the three CpG sites in blood showed no obvious
differences between participants with and without allergy (Supple-
mentary Fig. 8).

Along with making an accurate prediction model, we also aimed
to better understand the function of the selected CpG sites in allergic
disease. In this study, allergic disease phenotype was defined by the
combination of IgE sensitization and parent-reported symptoms fol-
lowing the definitions of the Mechanisms of the Development of
ALLergy (MeDALL) consortium4, which takes both IgE-mediated
mechanisms and multimorbidity into consideration. By creating sub-
sets of participants based on phenotype status, we could examine the
function of the three CpG sites on IgE sensitization and multi-
morbidity. Although IgE sensitization is generally used to define the
allergic status, sensitization to allergens does not necessarilymean the
participants have allergy symptoms34. Asymptomatic allergic partici-
pants may differ from symptomatic participants in total serum IgE
levels, mono- or polysensitization, presence of Treg cells, and basophil
reactivity35. Therefore, we need effective biomarkers that can distin-
guish asymptomatic sensitization from allergic disease. In our study,
the nasal DNA methylation levels of three CpG sites were lower in
symptomatic than asymptomatic IgE-sensitized participants, showing
the potential of these three CpG sites in nasal epithelial cells to be a
biomarker for the presence of symptoms in IgE-sensitized individuals,
or in otherwords, to be amore selective biomarker for allergic disease.
Thus, these CpG sites are not simply a nasal reflection of the presence
of specific IgE, but they also capture the presence of symptomatic
disease. In addition, the associationofmethylation levels at these three
CpG sites and the number of allergic symptoms (asthma/ rhinitis/
eczema) strongly suggest that our findings could also be used as a
biomarker for allergic multimorbidity, adding more clinical relevance
to our work. These findings were strongly replicated in a population of
Hispanic children, showing that our predictionmodel is valid across at
least two ethnicities.

Contrary to the predictive power of DNA methylation, genetics
did not contribute to the performance of our model. At first sight,

inherent genetic variants show great potential for early diagnosis of
various diseases, including obesity, coronary artery disease, and Alz-
heimer’s disease16,36,37. Large genome-wide association studies (GWAS)
have identified many genetic variants associated with allergic disease,
which enables allergic disease to be predicted based on polygenetic
risk scores. However, significant genetic variants identified by a recent
GWAS only explained a small proportion of disease heritability (3.2%
for asthma, 3.8% for hay fever, and 1.2% for eczema)8, and these iden-
tified variants were mostly common variants with relatively small risk
effects and ones that tend to be difficult for correctly identifying risk at
the individual level, thus offering limited predictive power for allergic
disease38. Dijk et al.39 generated a prediction model for asthma during
the first 8 years of life based on environmental factors and genetic risk
scores in 1858 children of the PIAMA study. Genetic risk scores based
on SNPs identified by a large asthma GWAS did not add predictive
power for asthma over using just family history and environmental
factors. This was also shown in an independent Swedish cohort study.

While our three-CpGmodel can predict the presence of an allergy,
several limitations should be taken into consideration. Firstly, our
model was trained in Dutch adolescents with a narrow age range. For
the two cohorts of younger children (COPSAC2010 and MAKI), model
extrapolation resulted in a low recall rate, in contrast to good replic-
ability in the independent adolescent cohort. Thismaybe explainedby
changes in DNAmethylation with aging40. From this, we conclude that
the current model is likely age-dependent and best applicable to
adolescents. Further studies should address if these, or other CpG
sites, can accurately diagnose allergies in younger children. Secondly,
as our model was trained using cross-sectional data, we could not
assess if our model could predict future disease status. Finally, our
findings that genetic variants did not contribute to the prediction of
allergic disease might be due to our relatively small dataset. However,
it has been reported that also in larger datasets, genetic risk variants of
allergic sensitization had limited value for clinical prediction at an
individual level41. Although we have shown the prediction power of
three nasal CpG sites, further mechanistic work is needed to disen-
tangle the causal pathway from SNPs, CpG methylation, to disease
status.

This study has three implications for biomarker discovery. Firstly,
on a general level, the combination of nasal methylation sites is sug-
gested to be a strong biomarker42 that is replicable across different
ethnicities. Secondly, there are promising implications for the field of
pediatric allergy: physicians are looking for accurate non-invasive
methods to diagnose diseases, especially in young children, and to
reducemisdiagnoses43. Nasal DNAmethylation biomarkerswould only
require a simplenasal swab rather than a blood test to assist physicians
in making a diagnosis. In addition, our model’s parsimonious nature—
with only three CpGs— makes it more cost-effective and shows the
potential to distinguish symptomatic and asymptomatic sensitization
and disease comorbidity. We do acknowledge, however, that further
validation in independent populations is required to assess the clinical
utility of the predictive model. Thirdly, epigenetics biomarkers hold
encouraging implications for the future. Besides diagnosis, these
might be used to facilitate decisions on personalized medicine and
treatment selection, though also for this, the model still needs to be
validated in other cohorts’ data. In cancer research, this has already
proved to be feasible and valuable44.

In conclusion, we have demonstrated that nasal DNAmethylation
has good prediction power for allergic diseases. We have presented a
parsimonious model using only three nasal CpG sites that can predict
allergic disease in adolescents; it was successfully replicated in an
independent adolescent cohort.We show that nasalmethylation bears
information on the presence of allergic disease in the presence of IgE
sensitization, and also reflects allergic disease multimorbidity. These
CpG sites reflect the influx of T cells and macrophages that contribute
to allergic inflammation.
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Methods
Study and population description
The discovery analysis was performed in the PIAMA birth cohort.
Details of the cohort have been published previously22. The PIAMA
study started in 1996 with 3963 newborns in the Netherlands, and the
current study used the data from a 16-year follow-up. We completed
the medical examinations of in total 802 children at age 16 years, and
348 individuals had complete data of their clinical phenotype at 16
years old, genotype data, blood and nasal DNA methylation data, and
environmental exposuredata—thesewere all included in the discovery
analysis ofmodel generation. Characteristicsof the dataset used in this
analysis compared to the initial PIAMA dataset can be found in Sup-
plementary Table 12.

In this study, an allergic disease case was defined as a child with at
least one of three allergic diseases (asthma/rhinitis/eczema) in com-
bination with the presence of IgE for at least one allergen. Details on
allergic disease definitions, specific IgE measurements, and study
questionnaires can be found in the online supplementary materials.
Detailed numbers of participants with each disease and IgE sensitiza-
tion in PIAMA can be found in Supplementary Fig. 9.

Ethical approval
The Medical Ethical Committees of the participating institutes
approved the study (Utrecht and Groningen METC (Medisch Ethische
Toetsings Commissie) protocol number 12–019/K), and the parents and
legal guardians of all participants, and later the participants them-
selves, gave written informed consent.

Data measurement and quality control
Genotype data. DNA was extracted from whole blood samples and
nasal brushing samples, which were collected from the lower inferior
turbinate. Genotyping was performed in four phases using four dif-
ferent platforms, Illumina Human610 quad array, Illumina Huma-
nOmniExpress array, Illumina Human Omni Express Exome Array, and
Illumina Infinium Global Screening Array. Quality control (QC) of each
phase was performed and then the data were merged together. SNPs
were harmonized by base pair position annotated to genome build 37.
In total, 2075 individuals remained after quality control, and their data
from the four platforms were merged together. Then imputation was
performed using theMichigan server with a reference panel of HRC.r1.
SNPs of high quality (imputation quality score Rsq >0.8), MAF >0.01,
and HWE <1 × 10−12 were used for further analysis. After stringent QC,
2075 samples and 2,893,496 SNPs remained. Quality control on the
genotype sequencing data was performed using plink (1.07) and
VCFtools (0.1.12b) was used to get the SNP dosages.

DNA methylation data. Blood and nasal DNA methylation were mea-
sured by Infinium HumanMethylation450 BeadChip array. QC steps
are described in the supplementary methods and were published
previously31. After QC, 613 blood samples and 478 nasal samples with
436,824 CpG probes remained. Methylation β-values at a given CpG
were derived from the ratio of the methylated probe intensity to
overall intensity (sum of methylated and unmethylated probe inten-
sities). Then β-values were transformed to methylation values (M-
values) as log2(β/(1-β)), which were used in the downstream analysis.

RNA-seq data. Total RNA was also extracted from nasal brushing
samples and was sequenced by Illumina HiSeq2500 sequencer using
default parameters for paired-end sequencing (2 × 100bp). Details on
the QC and alignment steps are disclosed in the supplement and were
reported previously31. In total, 17,156 expressed features and 326 sam-
ples passed QC. After matching with DNA methylation data, 244 sam-
ples remained for downstream analysis. Raw count data were
transformed to log2CPM using the voom function in the R package
limma45.

Modeling approach
Feature selection. For feature selection, we selected an initial list of
promising candidate variables based on previous research. The fea-
tures included:

Environmental factors. Perinatal/environmental factors were col-
lected using questionnaires during pregnancy and the first years of life
(pets during pregnancy, maternal smoking, breastfeeding, older sib-
lings at home, and low birth weight46,47).

Genetic factors. About 136 SNPs were chosen based on their strong
associationwith the allergy phenotype in aGWAS8, ofwhich 101 passed
ourQC thresholds.Moreover, the polygenic risk score (PRS) for allergy
was calculated from 4813 allergy-associated SNPs8, as well as PRSs
based on 660 asthma SNPs48, 8 rhinitis SNPs49, 425 eczema SNPs50, and
221 sensitization SNPs41.

Nasal and blood DNA methylation. The nasal and blood CpG sites
were pre-selected based on EWAS summary statistics [FDR <0.05]12,31,33.
After excluding CpGs, which were not available in the discovery and
replication cohorts, we included 134 nasal and 219 blood CpG sites in
the analyses.

Sex and age. In total, 348 individuals had complete data on all the
above features and were included in the model training.

All candidate features canbe founded in SupplementaryData 2, as
well as their study reference in Supplementary Table 13.

Machine learning method selection
We examined six supervised machine learning methods, including
XGBoost51, Random Forest52, Support Vector Machine53, Naive Bayes54,
Neural Network55, and Elastic Net23. Hyperparameter tuning was per-
formed using Grid Search with ROC AUC as an evaluation metric,
whereby each hyperparameter combination was evaluated using repe-
ated cross-validation. Based on these results, we selected the method
that provided accurate test performance, low overfitting, and good
interpretability. The selected model was used for downstream analysis.

Model training
Models were estimated within a cross-validation framework, and ten-
times repeated tenfold cross-validation was adopted. This allowed for
better model assessment, as it canceled out the randomness in fold
splits and gave insight into performance variation over various runs56.
To counteract the imbalance of the data (~20% cases and 80% controls),
different sampling techniques were assessed, including SMOTE57,
downsampling, and upsampling. The final model included upsampling
in the training data, such that both classes had the same frequency, by
adding additional samples to the minority class with replacement. Test
performance was defined as the average over the evaluation metric for
the repeated cross-validation predictions, whereas model stability was
assessed by inspecting the variation in performance of overall model
runs. Besides the ROC curve, the precision-recall curve (PRC) was used
as an additionalmeans for evaluating themodel, to avoid thepotentially
misleading interpretationof ROCwhenworkingwith imbalanceddata25.
Model training and evaluation was performed using the caret (6.0.86)
package in R (3.5.1)58.

Predictive contribution of each data layer
The predictive contribution of eachdata layer is defined as the uplift in
prediction performance after adding all its respective features to the
model.We adhered to an iterative procedure, where layers were added
sequentially. As the order of inclusion will affect the contribution
found (because information can already be embedded in other data
layers), we applied a sensitivity analysis on the order of the sequential
addition.
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Generation of a parsimonious model
A more parsimonious model with fewer variables can lead to less
overfitting andbetter predictionpower. Firstly, the feature importance
of all repeated cross-validation (cv) model runs was retrieved and the
rank product statistic was used to aggregate this into a single feature
with importance ranking based on all model runs59. Subsequently, we
created a model with only the feature with the highest rank product
statistic and its test performance was evaluated using ten-times repe-
ated tenfold cross-validation. The next most important feature was
added iteratively to the model until no substantial further improve-
ment in test performance was observed. Lastly, using the “corrected
repeated k-fold cv test”24, the performance difference between incre-
mentally more complex models was tested for significance. The final
model was selected when the addition of more variables led to no
significant improvement in model performance.

The 3-CpGmodel was also compared to the previously published
30-CpG nasal sites model that performed well in predicting atopy in
the EVA-PR cohort14. We employed an Elastic Net model, including
their prediction panel of 30-CpG sites, and made estimates with equal
model specifications in terms of tuning and validation. A comparison
was performed using the “corrected repeated k-fold cv test”60.

External replication
After validating the reduced-feature model on the PIAMA cohort, we
used the Epigenetic Variation and Childhood Asthma study in Puerto
Ricans study (EVA-PR, including participants aged 9 to 20 years)14 for
replication, as well as two cohorts of younger children (mean age 6
years) COPSAC201061,62 andMAKI63. Details of these cohorts are shown
in the supplementary materials.

Sensitivity analysis
To further assess the predictive power of the genetic factors, different
significance thresholds for the selection of SNPs in the PRS construc-
tion were evaluated. This analysis was performed in a larger dataset of
675 individuals from the PIAMA cohort for whom both genotype and
allergy phenotype data were available (see supplementary materials).
Firstly, four different PRSs were calculated using SNPs selected by
different p value thresholds in the allergy GWAS8 (P < 1 × 10−5, 1 × 10−6,
1 × 10−7, and 5 × 10−8). Next, the prediction performance of each PRS
was evaluated. Model performance was also examined for different
subgroups of individuals stratified by IgE sensitization, for an allergy
definition that is independent of sensitization and for sensitization
itself as a target variable. We stratified the samples by IgE sensitization
and symptom. Significant differences between each group pair were
assessed using a Student’s t-test.

Biological interpretation of three CpG sites
To understand the function of the three CpG sites, we first annotated
the CpG sites by position and then correlated the DNA methylation
level to the gene expression level by eQTM analysis. Briefly, 244 par-
ticipants had matched nasal DNA methylation and nasal gene expres-
sion data that were used for the eQTM analysis. We performed linear
regression analysis to assess the associationof the three CpG siteswith
all genes available, and the model was: gene expression level ~ DNA
methylation levels + age + sex + batch + study center. We controlled
the FDR at 0.05 after multiple testing at each CpG level. We then
performed WGCNA27 on the genes identified by eQTM analysis. Gene
modules identified from WGCNA were used for KEGG pathway
enrichment analysis using the R package topGO (https://bioconductor.
org/packages/release/bioc/html/topGO.html).

Single-cell RNA-seq data of nasal brushing samples were available
from four participants with asthma and five healthy controls, and were
measuredby 10x genomics. The detailed sample collection, alignment,
QC, clustering and annotation steps have been reported previously31.
In brief, cells with high percent.mito (>25%) and low gene counts

(<500) were removed at each sample level. Ambient RNA was cor-
rected using FastCAR (https://github.com/LungCellAtlas/FastCAR),
and Scrublet64 was used for identifying doublets. Downstream ana-
lyses, including normalization, scaling, clustering of cells, and identi-
fying cell marker genes were performed using the R package Seurat
version 4.065 (https://satijalab.org/seurat/). Harmony66 was used to
integrate data from different donors.

In total, ten cell-type clusters (basal, goblet 1, goblet 2, squa-
mous, cycling, ciliated, deuterosomal, ionocytes, myeloid, and
T cells) were identified. Re-clustering of the immune cell subset
(myeloid and T cells) identified the presence of two T cell clusters
(CTL and T cell cluster 2), three myeloid cell clusters (myeloid 1,
myeloid 2, and macrophages), B cells, plasma cells, and mast cells.
To identify the sub-cluster of T cells andmyeloid cells, we further re-
clustered the two T cell clusters and the three myeloid cell clusters,
respectively. Three T cell clusters (CD8/ CTL effectors, CD4/ Treg,
and NK cells) and five myeloid cell clusters (DC-1, DC-2, macro-
phages, pDCs, and classical monocytes) were identified. We then
checked the expression pattern of eQTM genes from Module 1 and
Module 2 (identified by WGCNA) in the identified cell types and
immune cell subsets, by plotting the scaled average expression of
the genes in the different cell types.

Methylation quantitative trait loci (MeQTLs) analysis was per-
formed using a linearmodel with R packageMatrixEQTL67. In total, 433
participants had matched genotype and DNA methylation data that
were included in the MeQTL analysis. Mediation analysis was per-
formed with R package Mediation68. Details of the methods can be
found in the online supplementary materials.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Nasal, blood DNAmethylation, and bulk RNA-sequencing data from the
discovery cohort (PIAMA) have been deposited in the European
Genome-phenome Archive (EGA), which is hosted by the European
Bioinformatics Institute (EMBL-EBI) and the Centre for Genomic Reg-
ulation (CRG), under accession number EGAS00001005189 and EGA
accession number EGAS00001006240. Nasal Single-cell RNA-seq data
have been deposited in EGA, under accession number
EGAS00001006657. Single-cell RNA-seq data count table were down-
loaded from Supplementary Table 2 of ref. 28 paper. Raw data to gen-
erate figures and tables are available from the corresponding author
with the appropriate permission from the PIAMA team and investigators
upon reasonable request and institutional review board approval. The
same applies to the figure’s source data of the replication cohorts. The
GWAS summary statistics used for the PRS can be found in the public
GWAS catalog (https://www.ebi.ac.uk/gwas/home) under the following
links: allergy (https://www.ebi.ac.uk/gwas/publications/29083406);
asthma (https://www.ebi.ac.uk/gwas/publications/29273806); rhinitis
(https://www.ebi.ac.uk/gwas/publications/30013184); eczema (https://
www.ebi.ac.uk/gwas/publications/26482879); sensitization (https://
www.ebi.ac.uk/gwas/publications/23817571). For the PRS analysis,
human genome build GRCh37 (https://www.ncbi.nlm.nih.gov/assembly/
GCF_000001405.13/) was used, while for the single-cell RNA analysis,
GRCh38 1.2.0 (https://support.10xgenomics.com/single-cell-gene-
expression/software/release-notes/build) (https://www.ncbi.nlm.nih.
gov/assembly/GCF_000001405.26/) was used.

Code availability
Our allergy predictionmodel and its code are freely available at https://
github.com/GRIAC-Bioinformatics/Allergy_prediction. The model is
documented and ready to be used for predicting allergic disease with
the three CpG sites as the input.
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